Mouse transgenesis, the stable integration of foreign DNA into the mouse genome, is a key approach used in biomedical research to explore gene function and regulation and to model human disease. Innovations in mouse transgenesis technologies include conditional gene modifications that inactivate gene function in tissue-specific manners, thereby overcoming embryonic lethality; and BAC transgenes to circumvent the position effects commonly found in standard transgenic mice. More recently, TALENs (TAL effector nucleases) and CRISPR/Cas9 systems have emerged as powerful new tools for genome modification in a variety of organisms and cell types, including mouse, rat, zebrafish, drosophila, C. elegans, and human stem cells and iPSCs (induced pluripotent stem cells).
The Transgenic Vectors Core specializes in novel genome engineering technologies and vector construction using recombineering and isothermal assembly to generate complex gene modifications not possible with restriction enzymes. Large segments of genomic DNA such as those found on BACs (Bacterial Artificial Chromosomes) are now routinely modified, facilitating production of vectors that were previously impossible to generate
The Transgenic Vectors Core designs and constructs TALENs, CRISPR/Cas9 and gene targeting vectors on a fee-for-service basis. Services are available for use by all Washington University investigators as well as investigators outside of the Washington University community.
Site |
Badges |
|
Washington University in St. Louis SoM Hope Center Transgenic Vectors Core
St. Louis, MO, 63110
United States
|
|